

The MINOS Collaboration

Argonne - Arkansas Tech - Athens - Benedictine - Brookhaven - Caltech - Cambridge - Campinas - Fermilab - Harvard - IIT - Indiana - Minnesota-Twin Cities - Minnesota-Duluth - Oxford - Pittsburgh - Rutherford - São Paulo - South Carolina - Stanford - Sussex - Texam A&M - Texas-Austin - Tufts - UCL - Warsaw - William & Mary

Goals of the MINOS Experiment

• Make precise measurement of Δm^2 and $\sin^2(2\theta)$

$$P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2(2\theta) \sin^2(1.27 \Delta m^2 L/E)$$

- Confirm oscillations vs. other explanations (decay, decoherence)
- Secondary goals:
 - Search for subdominant $v_{\mu} \rightarrow v_{e}$
 - Search for sterile neutrinos
 - CPT tests
 - Atmospheric neutrino and cosmic ray studies

2007-08: Very Productive Year!

- 2 boxes opened (v_{μ} CC and NC blind analyses), PRLs to be submitted soon.
- 8 Ph.D. theses
- Significant progress in understanding backgrounds and systematic uncertainties in all analyses

The MINOS Experiment

NuMI Beam

Run I 1.27 x 10²⁰ POT Run II 1.94 x 10²⁰ POT Run III 1.1 x 10²⁰ POT

Other beam configurations, including HE beam: $0.15 \times 10^{20} \text{ POT}$

Identifying Events in MINOS

 ν_{μ} CC event

Long µ track + shower at vertex

ve CC event

Short event with EM shower profile.

NC event

Short, diffuse event.

$$E_v = E_{shower} + E_{\mu,e}$$

$$\delta E_{\text{shower}} = 55\%/\sqrt{E}$$
 $\delta E_{\mu} = 6\%$ range, 10% curvature

Producing Neutrinos at the Main Injector

- Neutrinos are produced from secondary mesons created in 120 GeV/c p + graphite target interactions.
 The secondary mesons are focused by two magnetic
 - The secondary mesons are focused by two magnetic horns; v beam energy is tunable by moving target position longitudinally w.r.t. the horn positions.
 - In LE beam configuration, beam is composed of $92.9\% v_{\mu}$, $5.8\% \overline{v}_{\mu}$, and $1.3\% v_{e}$ and \overline{v}_{e} .

Predicting the Flux

- MINOS uses Fluka06 MC to predict the v flux.
- Uncertainty on flux is ~30% due to lack of hadron production data.
- To improve our data-to-MC agreement, we tune the Fluka MC to ND energy spectra of different beam configurations.
- These beam-reweighted spectra are used in all analyses discussed today.

Measurement of Hadron Production off NuMI Target in MIPP

- Main Injector Particle Production (MIPP) is a fixed target experiment with beams of π , K and p from 5-120 GeV/c and LH2, C, Be, Bi, U targets.
- MIPP has collected 1.6 x 10⁶ events of 120 GeV p striking the MINOS target.

Status of MIPP Analysis

- π - $/\pi$ +, K-/K+, and K/ π production ratios above 20 GeV/c agree well with expectations from MINOS beam-tuning.
- The MIPP Collaboration has completed the calibration of all PID detectors and is now focusing on the hadron production measurement from the NuMI target data set. Expected flux uncertainty is ~15% (statistics-limited).
- The proposed MIPP upgrade would allow a systematics-limited measurement of the NuMI flux to within a few percent.
- See poster by Yusuf Gunaydin.

Yu CC Amalysis

Precision measurement of Δm^2 and $\sin^2(2\theta)$

ν_μ CC Event Selection

- CC/NC separation achieved via a kNN event selection based on:
 - Track length
 - Mean pulse height
 - Fluctuation in pulse height
 - Transverse track profile

- Cut on separation parameter
 maximizes CC selection efficiency
 and minimizes NC background.
- Good agreement between data and MC above the CC/NC separation parameter cut.

Expected Far Detector Spectrum

- Near detector spectrum is extrapolated to the far detector.
- Use MC to provide energy smearing and acceptance corrections.

Systematic Uncertainties

- Systematic uncertainties estimated by fitting modified MC in place of data.
- v_{μ} CC measurement is statistics limited.
- Dominant uncertainties are:
 - ND/FD relative normalization (Δm^2)
 - Overall hadronic energy calibration (Δm^2)
 - NC background (sin²(2θ))

• These three systematic effects are included in the final fit as nuisance parameters.

FD Energy Spectrum/Performing the Fit

- FD energy spectrum is only looked at after performing:
 - low-level data quality checks
 - procedural checks
- 848 events observed in the FD
- 1065 ± 60 expected with no oscillations
- We fit the energy distribution to the oscillation hypothesis:

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2(2\theta) \sin^2(1.27 \Delta m^2 L/E)$

Contours

- Constrained fit:
 - $\Delta m^2 = (2.43 \pm 0.13) \times 10^{-3}$ eV² (68% CL)
 - $\sin^2(2\theta) > 0.90 (90\% CL)$
 - $\chi^2/\text{ndof} = 90/97$

- Unconstrained fit:
 - $\Delta m^2 = 2.33 \times 10^{-3} \text{ eV}^2$
 - $\sin^2(2\theta) = 1.07$
 - $\Delta \chi^2 = -0.6$

Alternative Hypotheses

Reconstructed neutrino energy (GeV)

Decay:

 $P_{\mu\mu} = (\sin^2\theta + \cos^2\theta \exp(-\alpha L/E))^2$ V. Barget et. al., PRL82:2640 (1999) $\chi^2/\text{ndof} = 104/97$ $\Delta \chi^2 = 14$ Disfavored at 3.7 σ

Decoherence:

 $P_{\mu\mu} = 1 - \frac{1}{2} \sin^2(2\theta) (1 - \exp(-\mu^2 L/2E))$ G.L. Fogli, et. al., PRD67:093006 (2003) $\chi^2/\text{ndof} = 123/97$ $\Delta \chi^2 = 33$ Disfavored at 5.7 σ

NC Analysis

The search for sterile neutrinos

NC Event Selection in the ND

- Since NC events probe active flavors, a depletion of NC events in the FD can only be explained by v_s .
- We select reconstructed "shower-like" (short) events that fall within a fiducial volume. 20

Measured Near Detector Spectrum

NC event selection efficiency is 90%, purity is 60%.

3-Flavor Analysis Results

Data/MC Comparison for $\theta_{13} = 0$

Energy Range (GeV)	0 - 3	0 - 120
Data	100	291
MC	115.16 ± 7.67	292.63 ± 15.02
Signific ance (σ)	1.15	0.10

- For $E_{vis} < 3$ GeV, $f_{NC} < 35\%$ at 90% CL.
- For E_{vis} < 120 GeV, f_{NC} < 17% at 90% CL.

Other Finalized Analyses

- "Sudden stratospheric warmings seen in MINOS deep underground muon data": High-energy cosmic muon rate is strongly correlated to temperature changes in the upper atmosphere. MINOS has shown that (under)ground-based high statistics cosmic muon measurements are a new tool to be used in tracking meteorological phenomena in the upper atmosphere.
- "Testing Lorentz Invariance and CPT Conservation with MINOS Near Detector Neutrinos": search for a sidereal signal in the MINOS ND.
 Upper limits set on individual SME Lorentz and CPT violating terms.
- "Observation of deficit in NuMI neutrino-induced rock and non-fiducial muons in MINOS far detector and measurement of neutrino oscillation parameters": see poster by Aaron McGowan

ve CC Amalysis

The search for ve appearance

ve Background Estimates

- Measurement dominated by backgrounds: at the CHOOZ limit, 12 ve events are expected with 42 background events (for 3.25 x 10²⁰ POT).
- Dominant backgrounds are NC and v_{μ} CC events.

- We see a very large discrepancy between selected v_e ND MC and data events.
- Two new data-driven methods
 have been developed to resolve
 the MC/data difference see
 posters by Steven Cavanaugh and
 Lisa Whitehead for details.

ve Sensitivity

- Projected limits for expected MINOS integrated exposures for the next few years.
- MINOS can improve upon the CHOOZ limit by ~x2.

Other Amalyses in the Works

- Anti-neutrino oscillation measurements
- ND measurements:
 - Inclusive CC cross-section and structure functions
 - MA extraction from quasi-elastic events
 - NC coherent scattering on Fe
 - Cosmic ray studies

Conclusions

- 2007-08 has been a very productive year for MINOS!
- Latest v_{μ} CC analysis results (3.36 x 10²⁰ POT):
 - $\Delta m^2 = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^2 (68\% \text{ CL}),$
 - $\sin^2(2\theta) > 0.90 (90\% CL)$,
 - Decay and decoherence models disfavored at 3.7 and 5.7 σ respectively.
- NC analysis results (2.46 x 10^{20} POT): fraction of disappearing NC events < 0.17 at 90% CL.
- Great progress in understanding the backgrounds and systematics in the ve appearance measurement; first results are expected later this year.
- Results from MIPP expected later this year, expected uncertainty on v flux is ~15%.
- Great progress in ND measurements, results expected soon.
- Thanks to FNAL AD, CD, and administration for all their hard work and support!

Backup Slides

MIPP Performance

- Momentum resolution is ~5% at 120 GeV/c, much better at lower momenta.
- Vertex resolution is ~8 mm in the beam direction, ~2 mm transverse.
- Reconstructed momentum appears to be systematically low by ~2%.

MIPP Performance

- Ckov has ~5 pe per β =1 particle.
- ToF resolution is ~300 ps
- TPC < dE/dx> resolution is \sim 12 %.

LE1 vs. LE2 Beam Configurations

ν_μ CC/NC Separation

- CC/NC separation achieved via a kNN
 - event selection based on:
 - Track length
 - Mean pulse height
 - Fluctuation in pulse height
 - Transverse track profile

vu CC Event Selection

- Cut on separation parameter maximizes CC selection efficiency and minimizes NC background.
- Good agreement between data and MC above the CC/NC separation parameter cut.

Far Detector Low-level Data Quality Checks

- FD energy spectrum is only looked at after performing:
 - low-level data quality checks
 - procedural checks

ND Distributions After Making PID Cut

Systematics After the Fit

- Normalization: +1.6%
- NC background: -7%
- Eshower: 34%

Systematics After the Fit

Old/New:

Reco changes: B-field, track finding

MC: hadronization and intranuclear rescattering models

Analysis: Fiducial volume +3% FD, E>30 GeV now kept, new cc/nc

seperator. (ROID improves efficiency from 75 to 81% and decreases

background from 1.8 to 0.6%).

Backgrounds in the FD sample:

NC: 5.9 events, tau=1.5 events, rock mu=2.3 events, CR = 0.7 events

Analysis:	POT(10**20)	# CC	DM2 (best fit 10**-3)
2006	1.27	215	2.74
2007	2.50	563	2.38
2008	3.36	848	2.43

		Best fit		Shift from		
				nominal best fit		
Systematic	Shift	$\Delta m_{ m atm}^2 / 10^{-3} { m eV}^2$	$\sin^2(2\theta_{23})$	$\Delta m_{ m atm}^2 / 10^{-3} { m eV}^2$	$\sin^2(2\theta_{23})$	
Nominal		2.385	1.000		_	
Far detector	-4%	2.465	1.000	+0.080	0.000	
normalisation	+4%	2.305	1.000	-0.080	0.000	
NC	-50%	2.390	1.000	+0.005	0.000	
background	+50%	2.385	0.996	0.000	-0.004	
Overall shower	-10%	2.315	1.000	-0.070	0.000	
energy scale	+10%	2.450	1.000	+0.065	0.000	
Relative shower	-2.2%	2.395	1.000	+0.010	0.000	
energy scale	+2.2%	2.375	1.000	-0.010	0.000	
Track energy	-2%	2.355	1.000	-0.030	0.000	
from range	+2%	2.415	1.000	+0.030	0.000	
FD Track energy	-4%	2.370	1.000	-0.015	0.000	
from curvature	+4%	2.400	1.000	+0.015	0.000	
SKZP beam	-1σ	2.375	1.000	-0.010	0.000	
errors	$+1\sigma$	2.390	1.000	+0.005	0.000	
Total ν_{μ} CC	-3.5%	2.385	1.000	0.000	0.000	
cross section	+3.5%	2.385	1.000	0.000	0.000	

Table 4: The best fits to sets of systematically shifted data (the fit constrained to $\sin^2(2\theta_{23}) \le 1.0$), and the shifts of the best fit parameters from the unshifted case.

2006-2008 Comparison

Sensitivity

- Final contour is a bit smaller than the predicted sensitivity because sin²(2θ) falls in the unphysical region.
- A study shows that
 26.5% of unconstrained
 fits have a fit value of
 sin²(2θ) ≥ 1.07
- Feldman-Cousins study indicates that our contours are slightly conservative.

NC Event Selection in the FD

- Identical
 cuts are
 made in FD
 as in ND.
- MC oscillated with 2007 MINOS CC best fit values of $\Delta m^2 = 2.38 \text{ x}$ 10^{-3} eV^2 and $\sin^2(2\theta) = 1$.

Far Detector Data

Monte Carlo

Cosmic Rays and Upper Atmospheric Weather

Sudden Stratospheric Warmings

- There is a strong correlation between the high energy cosmic ray rate and temperature changes in the upper atmosphere.
- The MINOS FD
 observers a large cosmic
 muons rate and can
 measure these percent level changes in rate.
- SSWs have been tracked using balloon measurements, rocket soundings, LIDAR, airborn and satellite observations. MINOS now provides another new tool with which to observe these meteorological phenomena.

ve Data-Driven Background Studies

Estimate	Signal v _e	Total BG	NC	νμ СС	Beam v _e	ντ СС
Horn On/Off	12	42	29	8	3	2
MRCC	12	43	32	6	3	2

 $\sin^2(2\theta_{23}) = 1.0$ $\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2$ $\sin^2(2\theta_{13}) = 0.15$ no matter effects $3.25 \times 10^{20} \text{ POT}$

- Horn On/Off constrain the relative ratios of NC and v_{μ} CC background events in two different beam configurations.
- Muon removed hadron showers from v_{μ} CC (MRCC).